Geologic context of in situ rocky exposures in Mare Serpentis, Mars: Implications for crust and regolith evolution in the cratered highlands

A.D. Rogersa,b,*, O. Aharonsona, J.L. Bandfieldc

a Division of Geological and Planetary Sciences, California Institute of Technology, MC 150-21, Pasadena, CA 91125, United States
b Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences, Stony Brook, NY 11794-2100, United States
c Department of Earth and Space Sciences, University of Washington, Johnson Hall 070, Box 351310, 4000 15th Avenue NE, Seattle, WA 98195-1310, United States

\textbf{A R T I C L E I N F O}

Article history:
Received 28 May 2008
Revised 15 October 2008
Accepted 20 November 2008
Available online 16 December 2008

Keywords:
Mars, surface
Infrared observations
Geological processes

\textbf{A B S T R A C T}

Global acquisition of infrared spectra and high-resolution visible and infrared imagery has enabled the placement of compositional information within stratigraphic and geologic context. Mare Serpentis, a low albedo region located northwest of Hellas Basin, is rich in spectral and thermophysical diversity and host to numerous isolated exposures of in situ rocky material. Most martian surfaces are dominated by fine-grained particulate materials that bear an uncertain compositional and spatial relationship to their source. Thus location and characterization of in situ rock exposures is important for understanding the origin of highland materials and the processes which have modified those materials. Using spectral, thermophysical and morphologic information, we assess the local and regional stratigraphy of the Mare Serpentis surface in an effort to reconstruct the geologic history of the region. The Martian highlands in Mare Serpentis are dominated by two interspersed surface units, which have distinct compositional and thermophysical properties: (1) rock-dominated surfaces relatively enriched in olivine and pyroxene, and depleted in high-silica phases, and (2) sediment or indurated material depleted in olivine and pyroxene, with relatively higher abundance of high-silica phases. This is a major, previously unrecognized trend which appears to be pervasive in the Mare Serpentis region and possibly in other highland areas. The detailed observations have led us to form two hypotheses for the relationship between these two units: either (1) they are related through a widespread mechanical and/or chemical alteration process, where less-mafic plains materials are derived from the mafic bedrock, but have been compositionally altered in the process of regolith formation, or (2) they are stratigraphically distinct units representing separate episodes of upper crust formation. Existing observations suggest that the second scenario is more likely. In this scenario, plains materials represent older, degraded, and possibly altered, “basement" rock, whereas the rocky exposures represent later additions to the crust and are probably volcanic in origin. These hypotheses should be further testable with decimeter-resolution imagery and meter-resolution short wavelength infrared spectra.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The nature and origin of intercrater surfaces within the martian cratered highlands have been somewhat enigmatic since the Mariner era (Malin, 1976; Greeley and Spudis, 1981; Tanaka et al., 1988; Edgett and Malin, 2002). These surfaces may consist of impact debris, sediments deposited through fluvial and/or aeolian action, and/or volcanic deposits. It is likely that all of these modification processes have played a role in intercrater plains formation to some extent, however the relative contribution of each is largely unknown (Tanaka et al., 1988). Determination of the relative contributions has been hampered by the presence of a veneer of mobile material, ambiguity of or lack of diagnostic morphologic features, and lack of high-resolution geomorphic, thermophysical and compositional data.

The fine component of the martian regolith, here meaning the upper few centimeters of sand and dust deposits found globally across the surface, has been well-characterized with orbiting and landed spectrometers. The composition of dust deposits in high-albedo regions likely includes framework silicate minerals (Bandfield and Smith, 2003; Ruff, 2004), as well as small amounts of carbonates (Bandfield et al., 2003) and nanophase oxides (Allen et al., 1981; Morris et al., 1990; Bell et al., 1993). Low resolution visible/near-infrared (VIS/NIR) and thermal infrared (TIR) remote spectroscopic observations have shown that high- and low-Ca pyroxenes, plagioclase, olivine and high-silica amorphous, primary and/or secondary phase(s) dominate the mineralogy of low-
albedo highland regions (see reviews and summaries by Singer et al., 1979; Soderblom, 1992; Roush et al., 1993; Christensen et al., 2001; Bandfield, 2002; Bibring et al., 2005; Christensen et al., 2005; Ruff et al., 2006; Farrand et al., 2007; Rogers and Christensen, 2007; Farrand et al., 2008; Rogers and Aharonson, 2008). The southern highlands show some regional variability, with the most dominant composition consisting primarily of low-
and high-Ca pyroxenes, plagioclase, high-silica phases and olivine (Mustard et al., 2005; Rogers and Christensen, 2007). Local-scale enrichments of olivine, high-silica phases, high-Ca clinopyroxene, low-Ca pyroxene, quartz/feldspars, sulfate, phyllosilicate and gray crystalline hematite have been identified in the highlands with Mars Global Surveyor Thermal Emission Spectrometer (TES), Mars Odyssey Thermal Emission Imaging System (THEMIS), Mars Express Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA), and Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data sets (Christensen et al., 2000a, 2003; Hamilton et al., 2003; Hoefen et al., 2003; Bandfield et al., 2004a; Hamilton, 2004; Bibring et al., 2005; Christensen et al., 2005; Gendrin et al., 2005; Hamilton and Christensen, 2005; Mustard et al., 2005; Poulet et al., 2005; Rogers et al., 2005; Bandfield, 2006; Gloch and Rogers, 2007; Murchie et al., 2007), however systematic mapping of these phases at high-resolution has not yet been carried out.

High resolution thermophysical and spectroscopic data sets permit examination of the geology of highland materials in detail. In particular, it is now possible to identify and resolve exposures of bedrock and other locally-derived rocky material such as boulders, cobbles and pebbles, using thermophysical observations (Christensen et al., 2003; Rogers et al., 2005; Fergason et al., 2006; Edwards et al., 2005). Most martian surfaces are dominated by fine-grained particulate materials that bear an uncertain compositional and spatial relationship to their source. Location and characterization of in situ rocky exposures is important for understanding the origin of highland materials and the processes which have modified those materials.

In an effort to contribute to current understanding of highland origin, stratigraphy and evolution, this study focuses on the characterization of rock exposures and surrounding materials in a typical region of the cratered highlands, Mare Serpentis. Mare Serpentis is a low-albedo region between 30–50° E and 15–30° S, northwest of Hellas Basin (Fig. 1). This region was chosen because it contains a concentration of several intercrater plain rocky exposures within a relatively small area (Edwards et al., 2005). In addition, the location within a low-albedo area facilitates spectroscopic charac-

terization due to the relative lack of dust cover. The goals of this study are to: (1) understand how the well-characterized regolith fine component relates to in-place rock, (2) determine the degree of vertical and lateral compositional heterogeneity within exposed rocky surfaces, and (3) determine the geologic origin of in situ material in Mare Serpentis.

2. Methods

Thermal inertia (TI) values derived from THEMIS (Christensen et al., 2004) surface temperature data using the method of Fergason et al. (2006) are used to locate rock-dominated surfaces. All available THEMIS images were initially searched for surfaces with TI values of 1200 units of J m^-2 K^-1 s^1/2 are used throughout this manuscript and are hereafter omitted) or higher. This value was chosen as a conservative threshold for identifying locally-derived material. With the exception of outflow channel flood deposits, crater ejecta and rocks derived from nearby cliffs, this TI value ensures that the infrared spectral signature is dominated by directly-derived boulders, cobbles and pebbles, rather than potentially regionally-homogenized sand, silt, and dust (Fergason et al., 2006). In Mare Serpentis, surfaces with TI values of 1200 are typically restricted to areas of only a few spatially contiguous THEMIS pixels. However, the geomorphic properties associated with a TI value of 1200 in Mare Serpentis (a pitted, resistant texture in Mars Orbiter Camera (MOC) imagery) typically extends well beyond these small areas, to include surfaces with TI values as low as ~500 (Fig. 2). Though lower than 1200, TI values >500 are high relative to the majority of the martian surface (e.g., Putzig et al., 2005) and are consistent with clast sizes greater than or equal to coarse gravel (Presley and Christensen, 1997). For relatively flat plains surfaces, coarse gravel is not likely to have been transported far from its original source, thus the TI value associated with in situ rock exposures in this study was relaxed to a minimum of 500. In summary, rock exposures in Mare Serpentis are distinguished by having TI values greater than 500 and by a characteristic texture in high-resolution images (Fig. 2). The majority of these exposures contain some THEMIS pixels with TI values greater than 900, whereas four of them contain values of 1200 or more.

Portions of THEMIS daytime infrared images with average surface temperatures >245 K (Bandfield et al., 2004b) TES albedo values <0.16, and TES 1350–1400 cm^-1 emissivity >0.960 (Ruff and Christensen, 2002) were selected for detailed spectral analysis of the rocky exposures and surrounding materials. These restrictions ensured high signal to noise ratio data of surfaces free of ob-
scurring dust cover. The images were corrected for time-dependent detector temperature changes and the constant atmospheric radiance component using the methods of Bandfield et al. (2004b), and converted to apparent emissivity using the emissivity normalization method (Gillespie, 1985; Christensen, 1998). Emissivity images were examined for spectral variability using a decorrelation stretch (DCS, Gillespie et al., 1986) of three different spectral band combinations (8/7/5, 9/6/4, and 6/4/2, corresponding with 11.8/11.0/9.4 μm, 12.6/10.2/8.6 μm, and 10.2/8.6/6.8 μm, respectively).

TES spectra that cover and isolate spectrally-uniform areas within the study area (identified using the THEMIS DCS images) were selected for derivation of surface emissivity and mineral abundance estimation. Only TES emissivity spectra associated with surface temperatures >270 K, dust extinctions <0.15 and ice extinctions <0.04 were used. The selected spectra are averaged and the atmospheric components are removed using the deconvolution method of Smith et al. (2000). This method uses a spectral library of potential surface endmembers, atmospheric endmembers (Bandfield et al., 2000a; Bandfield, 2002), and blackbody to obtain a linear least-squares fit to the measured TES effective emissivity spectrum. The atmospheric component spectra are scaled according to their modeled concentrations and subtracted from the measured spectrum to produce the surface emissivity spectrum. This process is conducted for as many spectra as possible that cover the region of interest, preferably from varying atmospheric conditions, to build confidence in the derived surface emissivity spectrum. To derive mineral abundance estimates from TES spectra, the average surface emissivity spectrum is modeled using a best-fit linear combination (e.g., the algorithm of Ramsey and Christensen, 1998; revised according to Rogers and Aharonson, 2008) of emission spectra of minerals (Christensen et al., 2000b), mineraloids, glasses, and martian surface dust (Bandfield and Smith, 2003). The library constructed for this study is similar to that of Rogers and Christensen (2007), but with additional sulfate and phyllosilicate mineral spectra. To compensate for the increase in library size, a few spectra from slightly overrepresented mineral groups (alkali feldspar, plagioclase, serpentine and amphibole) in the Rogers and Christensen (2007) library were removed.

OMEGA data are also used to examine the mineralogic composition of bedrock and surrounding surfaces. Only data from the OMEGA C-channel (0.9–2.7 μm) are used, due to current complications associated with interpreting the L-channel data (2.5–5.1 μm) (e.g., Mustard et al., 2007). To ensure retrieval of the highest-quality spectra, data associated with incidence angles >70° and emergence angles >20° were excluded (Pelkey et al., 2007). The data are calibrated and converted to reflectance using the methods outlined in the OMEGA data set tutorial available from the Mars Express archive (http://www.rssd.esa.int/index.php?project=PSA&page=MarsExpress). The data are corrected for atmospheric contributions using the method of Bibring et al. (2005). Mineral indicator maps are produced from OMEGA data using the spectral indices identified by Pelkey et al. (2007). Mineral detections suggested by these maps are verified by visual inspection of spectra from each detection and comparison with laboratory spectra of minerals available from the NASA RELAB facility at Brown University. Instrumental artifacts such as “hot” and “dead” channels and perturbed pixels as well as atmospheric features such as water ice clouds are avoided using the methods described in the OMEGA software reduction document (from the Mars Express Archive) and in Pelkey et al. (2007).

High resolution MOC narrow angle (∼1.5–3.0 m/pixel) and THEMIS visible images (∼18 m/pixel) are used to characterize finescale surface textures and geomorphology. Topographic profiles extracted from MOLA elevation data binned at 128 ppd (Smith et al., 2001) are used to measure thicknesses and elevations of units. TES albedo, MOC wide angle, MOC narrow angle, and THEMIS VIS images are used to examine relative brightness variations within the study region. At the time of writing, MRO CRISM, Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE) data over the rocky exposures are not publicly available.

Fig. 2. (a) THEMIS TI derived from night time image I17841010 of a typical rocky exposure and surroundings. Values greater than 500 (green to red) indicate rocky material, whereas blue coloration indicates lower TI plains. (b) MOC image R1100825 showing typical morphology of high TI rocky material and low TI plains. See Fig. 1 for context. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. THEMIS daytime radiance images, decorrelation stretched using bands 8/7/5 as red, green and blue. Each panel is ~30 km wide. Rocky exposures appear magenta (white arrows point to typical examples), while surrounding low TI plains appear greenish-yellow or pink. Light blue units (black arrows point to examples) are found associated with rocky surfaces and plains. See Fig. 1 for context.
3. Results

3.1. Thermal Inertia

The TI values of rocky exposures are typically between 500–1600 (Section 2). Fig. 2 shows typical spatial variability in TI within a rocky exposure. Where crater ejecta blankets are distinguishable in either nighttime IR or visible data, the TI of the ejecta blankets typically ranges between 160–270. Plains materials that are not obviously part of impact ejecta blankets exhibit TI values between 120–420.

3.2. Composition

THEMIS DCS images reveal that the in situ rock exposures are spectrally distinct from surrounding materials (Fig. 3). The exposures appear magenta in band 8-7-5 DCS images, while lower TI surrounding materials (hereafter also referred to as “lower TI plains”) appear greenish-yellow or pink. Representative THEMIS spectra from the rock exposures are compared with surrounding plains surfaces (Fig. 4). The spectral differences, mainly a lower emissivity in bands 6 (10.2 μm) and 7 (11.0 μm), are consistent with the rock exposures containing a higher abundance of pyroxene and olivine than the surrounding plains. Crater ejecta materials are spectrally indistinguishable from the surrounding plains (Fig. 3). Also commonly observed in the region are small isolated units that appear light blue in 8/7/5 stretches (Figs. 3–4). The DCS light blue units are similar in spectral shape to the lower TI plains, but have a negative slope imposed on the overall spectral shape. The light blue units are also associated with a lower TI than the rocky exposures, with values of 160–440.

Though the rock exposures typically appear spectrally homogeneous in DCS 8/7/5 images, there are exceptions observed in some areas, particularly in the warmest images available (bedrock surface temperatures >240 K). In these images, the exposures exhibit small interspersed areas of red and blue spectral units (in 8/7/5 band combinations, Fig. 5). The DCS red unit exhibits a distinctly lower emissivity in Band 4 (8.6 μm) and higher emissivity in Bands 6–8 (10.2–11.8 μm), relative to the DCS blue unit. The spectral variations also correspond with differences in albedo and TI. The DCS red regions have a relatively higher albedo and exhibit the highest TI within the exposure, while the DCS blue regions are darker and have a slightly lower TI. The spectral differences sometimes observed within the exposures are too small to be discernable in

Fig. 4. Atmospherically-corrected THEMIS spectra extracted from rocky outcrops, plains, and light-blue spectral units. The upper three sets of spectra show the typical spectral character of the three units, extracted from multiple images. The lower set of spectra are from a single THEMIS image, showing the typical variance observed on the spectral averages. The spectra from DCS light blue materials are not usually statistically separable from those of the rocky surfaces, despite their distinct distributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Portion of THEMIS daytime radiance image I08675002, decorrelation stretched using bands 8/7/5 as red–green–blue. Arrows point to small scale spatial heterogeneity in composition that is occasionally observed within the rocky exposures. See Fig. 1 for context. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

TES or OMEGA data. However the differences are consistent with the DCS red unit having increased sulfate and/or high silica phases, or with simply being less mafic than the bluer regions.

The DCS light-blue units found within the region are also too small for detailed compositional analysis with existing data that meet our selection constraints, however the spectral character and mineralogic composition of rocky exposures and surrounding low Ti plains were determined using TES and OMEGA observations (Figs. 6 and 7). The spectral difference between the rocky materials and surrounding plains is similar in character, but not as extreme in TES spectra as that observed in THEMIS spectra (Fig. 6). This may be attributed to the difference in spatial resolution between the THEMIS and TES instruments. Small areas with the strongest DCS magenta colors were selected for the THEMIS spectral averages in Fig. 4. Larger regions, such as at the km scale of TES observations, incorporate some of the plains materials within the measurements.

Fig. 6 shows the TES-derived surface emissivity for rock and surrounding lower-Ti plains derived from five orbits. The most significant difference between the spectral shapes of the two units is found in the region between ~400 and 500 cm\(^{-1}\). In this region, the rock exposures exhibit a broad emissivity peak whereas it is narrower and shifted towards longer wavelengths in lower-Ti surfaces. Rock exposures also exhibit a positive slope in emissivity between 507 and 444 cm\(^{-1}\), while surrounding lower-Ti materials exhibit a negative emissivity slope in this region. These long-wavelength differences are attributable to variations in olivine, pyroxene, and high-silica phase abundances. Crater ejecta blankets have mineral abundances that are similar to the plains, and are spectrally indistinguishable from the plains.

TES spectra from two orbits with the most distinct difference in spectral shape between the low-Ti plains and rock exposures were selected for linear least squares minimization modeling using the library in Table 1 (Fig. 6b). Because the TES spectra do not completely isolate the rocky exposures from plains materials, the TES-derived feldspar, pyroxene, olivine and high-silica phase abundances of the rocky exposures do not differ from plains materials outside of the stated uncertainties (Table 2). However, derived mineral abundances from individual orbits may be used to identify trends in compositional difference between the rocky exposures and plains. In general, high inertia units have more pyroxene, and high-silica phase abundances.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Spectral library.(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz BUR-4120</td>
<td>Quartz</td>
</tr>
<tr>
<td>Microcline BUR-3460</td>
<td>Alkali feldspar</td>
</tr>
<tr>
<td>Albite WAR-0235</td>
<td>Plagioclase</td>
</tr>
<tr>
<td>Oligoclase BUR-060D</td>
<td></td>
</tr>
<tr>
<td>Andesine WAR-0024</td>
<td></td>
</tr>
<tr>
<td>Labradorite BUR-3080A</td>
<td></td>
</tr>
<tr>
<td>Bytownite WAR-1384</td>
<td></td>
</tr>
<tr>
<td>Anorthite BUR-340</td>
<td></td>
</tr>
<tr>
<td>Bronzite NMNH-93527</td>
<td>Orthopyroxene</td>
</tr>
<tr>
<td>Enstatite HS-9.4B</td>
<td></td>
</tr>
<tr>
<td>Hypersthene NMNH-B18247</td>
<td></td>
</tr>
<tr>
<td>(1) Avg. Lindsley pigeonite</td>
<td>Low-Ca clinopyroxene</td>
</tr>
<tr>
<td>Diopside WAR-6474</td>
<td>High-Ca clinopyroxene</td>
</tr>
<tr>
<td>Augite NMNH-9780</td>
<td></td>
</tr>
<tr>
<td>Augite NMNH-122302</td>
<td></td>
</tr>
<tr>
<td>Hedenbergite manganese DSM-HED01</td>
<td></td>
</tr>
<tr>
<td>Forsterite BUR-3720A</td>
<td>Olivine</td>
</tr>
<tr>
<td>Fayalite WAR-RFAYO1</td>
<td></td>
</tr>
<tr>
<td>(2) KI 3362 Fo60</td>
<td></td>
</tr>
<tr>
<td>(2) KI 3115 Fo68</td>
<td></td>
</tr>
<tr>
<td>(2) KI 3373 Fo35</td>
<td></td>
</tr>
<tr>
<td>(2) KI 3008 Fo10</td>
<td></td>
</tr>
<tr>
<td>Biotite BUR-840</td>
<td>Phyllosilicates</td>
</tr>
<tr>
<td>Muscovite WAR-5474</td>
<td></td>
</tr>
<tr>
<td>Serpentine HS-8.4B</td>
<td></td>
</tr>
<tr>
<td>Illite Imt-1 <0.2 μm (pellet)</td>
<td></td>
</tr>
<tr>
<td>Ca-montmorillonite solid STx-1</td>
<td></td>
</tr>
<tr>
<td>Saponite (Eb-17) <0.2 μm (pellet)</td>
<td></td>
</tr>
<tr>
<td>SWy-1 <0.2 μm (pellet)</td>
<td></td>
</tr>
<tr>
<td>(5) K-rich Glass</td>
<td>Amorphous silica</td>
</tr>
<tr>
<td>(5) SiO₂ Glass</td>
<td></td>
</tr>
<tr>
<td>(6) Opal-A (01-011)</td>
<td></td>
</tr>
<tr>
<td>(7) Al-opal</td>
<td></td>
</tr>
<tr>
<td>Magnesiohastingsite HS-115.4B</td>
<td>Amphibole</td>
</tr>
<tr>
<td>Magnesiohornblende WAR-0354</td>
<td></td>
</tr>
<tr>
<td>(8) Ave. Meridiani and Aram Hematite (TT derived)</td>
<td>Oxide</td>
</tr>
<tr>
<td>Anhydrite ML-S9</td>
<td>Sulfate</td>
</tr>
<tr>
<td>Gypsum ML-S6</td>
<td></td>
</tr>
<tr>
<td>Kieserite</td>
<td></td>
</tr>
<tr>
<td>(9) Crystalline heulandite Zeolite</td>
<td></td>
</tr>
<tr>
<td>Calcite C40</td>
<td></td>
</tr>
<tr>
<td>Dolomite C20</td>
<td></td>
</tr>
<tr>
<td>Crystalline stilbite</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Mineral spectra are from the ASU spectral library available online at http://tes.asu.edu (Christensen et al., 2000b), with the following exceptions: (1) Wyatt et al. (2001); (2) provided by V.E. Hamilton; (3) Michalski et al. (2006); (4) Michalski et al. (2005); (5) Wyatt et al. (2001); (6) Michalski et al. (2003); (7) provided by M.D. Kraft; (8) Glotch et al. (2004); (9) provided by A.M. Baldridge; (10) spectra described in Ruff (2004).
The THEMIS-derived silicate absorption shifts to longer wavelengths with increasingly clase/pyroxene ratios are due to a spectral effect caused by non-preferred mineralogy of the rock and plains units.

Furthermore, the differences in TES and THEMIS spectra between the two units are more apparent in these orbits. The differences in TES and THEMIS data (Fig. 4) are commonly observed in spectral units identified from THEMIS data. The differences between OMEGA spectral averages from each unit are likely to be somewhat affected by limited spatial resolution compared to the THEMIS data. Mineral parameter maps derived from the OMEGA data do not show any detectable olivine in either the rocky exposures or surrounding plains. The difficulty in detecting olivine in pyroxene-rich surfaces measured by OMEGA data has been noted for the Meridiani Planum region (Arvidson et al., 2006). In that study, Arvidson et al., suggest that one reason for this may be increased backscattering of pyroxene crystals relative to olivine. Alternatively, nanophase metallic iron particles finely dispersed within the olivine could also obscure detection in the VIS/NIR spectral region (Pieters et al., 2008).

3.3. Morphology, texture and relative albedo

Fig. 8 shows two MOC images that cover the spectral units identified in THEMIS data. Rocky materials exhibit a consistent morphology in MOC imagery (Figs. 2b, 8a and 8b), and commonly appear pitted and rough compared to the surrounding plains (Fig. 2b). Small-dark-toned bedforms are sometimes observed within the pits. Brightness variations are commonly observed within the rocky exposures (Fig. 8). These appear to be due to actual differences in rock tone, rather than variations in amount of sediment cover, because bedforms are not regularly observed in the darker toned areas. However, it is possible that sand could be concentrated in small crevasses in the bedrock, which could give the appearance of a darker tone. THEMIS Ti values of the darker toned areas are slightly lower than the bright toned areas, consistent with increased dark sand cover.

Low-TI plains and crater ejecta blankets have a degraded appearance in MOC imagery relative to the rock exposures. The plains do not have a consistent morphology: a range of features including bedforms, dark-toned sand sheets, secondary craters, ridges, mesas and rough/pitted material are commonly observed (Figs. 8 and 9). Crater ejecta blankets and low-TI plains are not consistently lighter.
3.4. Geologic context of in situ rock exposures

Rock exposures occur in intercrater plains and crater floors. They commonly overlie, but also are regularly superposed by, ejecta blankets from large diameter (>40 km) craters (Figs. 1 and 11). This suggests that the rock exposures, if they represent a single stratigraphic unit, were emplaced during the same time period that these large craters formed (late Noachian/early Hesperian) (Greeley and Guest, 1987). The rock exposures occur at a range of elevations (650–2750 m) and are sometimes deformed by wrinkle ridges. Rocky materials with compositions similar to these may have a wider distribution outside the study region, indicated by preliminary examination of THEMIS DCS images and THEMIS and TES surface emissivity spectra in other cratered highland regions.

The margins of the rock exposures are sharp, with a distinct change in morphology from rocky-type to low-TI plains-type within a distance of 5–10 m. The nature of the contact between the rocky materials and low-TI plains is not evident from available imagery or topographic information. High-resolution images were examined for lobate margins or scarps, which might indicate the stratigraphic position relative to the plains, however no diagnostic examples were found. The contacts between the rocky surface margins and adjacent plains are sharp relative to the spatial reso-
lution of individual orbit track MOLA topographic profiles, and thus
the fine topographic relief across the margins cannot be resolved.
Because of this, altimetric data also do not provide a unique strati-
graphic relationship.

4. Discussion

4.1. Geologic units

On the basis of TI, spectral properties and geomorphology, four
units are distinguished in the study region (Table 3). A geologic
sketch map illustrating the typical spatial relationships in the re-
region is shown in Fig. 12. A rocky unit, characterized by high TI
(>500), an olivine- and pyroxene-rich mineralogical composition,
and an erosion-resistant morphology, is found in intercrater plains
as well on the floors of craters. Crater ejecta materials are observed
either in visible or nighttime infrared imagery. Plains that are gen-
erally undifferentiated with respect to composition, morphology,
and TI comprise the third unit. The undifferentiated plains and
crater ejecta units are compositionally distinct from the rocky unit,
consisting of less pyroxene and/or olivine (and therefore higher
plagioclase/pyroxene ratios), and more high-silica phases. A light-toned unit is distinguished by its spectral character, relatively high albedo, and low TI. THEMIS spectra over the light toned unit are consistent with undifferentiated plains materials with contributions of minor amounts of dust. The Mars Reconnaissance Orbiter CRISM instrument, with a spatial resolution of ~ 38 m or better, may reveal more information about variability within the rocky exposures, as well as the detailed mineralogical composition of the light-toned unit.

4.2. Stratigraphic relationships

With the exception of the rocky unit, the geologic units defined above exhibit TI values of 120 to 440, consistent with either unconsolidated fine sediment to fine gravel (100 to ~ 3000 μm) or weakly to moderately indurated material. With the possibility that the undifferentiated plains are unconsolidated sediment, it is difficult to assess the stratigraphic relationship between the plains and rocky units. However, for the sake of revealing possible geologic relationships, we temporarily assume that the undifferentiated plains are an indurated unit and try to assess its stratigraphic position relative to the rocky unit.

Morphology and topography of the outcrop edges do not reveal whether they are depositional margins or erosional boundaries (Section 3.4), however there are other observations that can be used to assess stratigraphic position. Crater rims, walls and ejecta are spectrally identical to the undifferentiated plains (Section 3.2), suggesting that they are part of the same unit. The rocky unit is commonly found abutting crater rims, and covering crater floors, indicating that it was deposited after these craters formed (Fig. 11a). Thus the observation that the rocky unit appears to have formed after the craters suggests that it also formed after the undifferentiated plains. In addition, ejecta blankets from craters with diameters larger than ~ 3 km usually exhibit plains-like spectral properties (Figs. 11a and 11b), regardless of whether the impact sites are on the undifferentiated plains or on the bedrock. This observation suggests that impacts greater than ~ 3 km diameter have excavated plains-like material from underneath the rocky unit, and that relative to the plains, the rock exposures are volumetrically minor contributions to the surface. It is possible that materials with the plains-like composition could be derived from the bedrock through the impact process itself (e.g., Hörz et al., 1984) (Section 4.3). However, there is at least one example of a ~ 3 km crater within the rocky unit that is spectrally identical to that unit (Fig. 13), rather than to the undifferentiated plains. This indicates that mechanical alteration via the impact process is not primarily responsible for the observed ejecta compositions; in addition, this example (Fig. 13) indicates that the rock unit varies in thickness.

The observations above suggest that the mafic rocky unit stratigraphically overlies the undifferentiated plains. However, there are areas where plains-like materials that are not part of crater ejecta blankets appear to lie above the rocky unit (Fig. 14). Thus, the stratigraphic relationship between these two units is not clear. If the plains unit is solely indurated material, the data indicate that plains-like material is found both stratigraphically above and below the mafic rocky unit. This would imply a change in conditions to produce the mafic rocky material (such as volcanic activity), followed by a rapid return to pre-rocky unit conditions.

We view this scenario as unlikely, and suggest instead that the undifferentiated plains at least partially consist of mobile sediment. Features indicative of erosion in indurated material are absent in the plains unit. In addition, aeolian bedforms are commonly observed on the low-albedo plains (Section 3.3), further supporting the idea that the plains materials are partially unconsolidated. However, it is clear that not all of the undifferentiated plains materials are unconsolidated. For example, Fig. 15 shows an undifferentiated plains “island” surrounded by mafic rocky material, where
an ∼ 80 m thick stack of plains material sits isolated on a steep butte. The steep morphology of the butte (∼9°) and sharp margin indicates that it is not a deposit of unconsolidated sediment. Rather, it is either weakly consolidated or there is a thin layer of sediment derived directly from an intact butte of “basement” rock with plains composition (relatively low pyroxene and olivine abundance). Thus we conclude that the upper few centimeters of undifferentiated plains unit consists at least partially (if not entirely) of sediment; still, some areas of the undifferentiated plains may be indurated. The origin of the plains sediment is discussed below.

4.3. Origin of rock and low-TI plains units

The observations presented here demonstrate a major compositional and thermophysical trend present in the study region, with isolated exposures of mafic bedrock and rocky material surrounded by less mafic, lower TI plains. Determining
Fig. 11. (a) THEMIS daytime radiance mosaic, decorrelation stretched using bands 8/7/5 as red–green–blue. Regional unit contacts are designated with black lines. “A” points to crater rim that is abutted by a rocky exposure. The proximity of the exposure to the crater rim indicates that the ejecta from the crater underlies the exposure. “B” points to a ∼5 km diameter crater that impacted into the rocky exposure. The ejecta blanket from the crater is spectrally identical to the low-TI plains. (b) THEMIS daytime radiance image I01285001, decorrelation stretched using bands 8/7/5 as red–green–blue. The image shows rocky exposures that are partially buried by ejecta from nearby craters. The ejecta is spectrally identical to the low-TI plains. See Fig. 1 for context of these images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. (a) Geologic sketch map of a portion of the study region, showing typical unit relationships. (b) THEMIS nighttime infrared radiance mosaic of region in (a), for comparison.

4.3.1. Alteration

The first scenario to be considered is that both units originated as a single mafic bedrock unit. In this scenario, the plains materials are derived from the rocky unit, but have been compositionally altered in the process of regolith formation. One potential way to alter the derived materials is through mineral-specific comminution. Hörz et al. (1984) simulated the comminution of rocky surfaces by exposing coarse-grained gabbro fragments (2–32 mm) to hundreds of impacts. They found that the comminuted products became enriched in plagioclase and depleted in pyroxene by 10–15% after only five impacts. For example, the 125–250 μm size fraction consisted of 65–70% plagioclase and 20–25% pyroxene...
Fig. 13. (a) THEMIS daytime radiance mosaic decorrelation stretched using bands 8/7/5 as red–green–blue. (b) THEMIS nighttime radiance mosaic. “A” points to a ∼3 km diameter crater whose impact ejecta is spectrally identical to the rocky unit. “B” points to a nearby crater within the rocky unit, whose ejecta blanket is spectrally identical to undifferentiated plains. The differences in spectral properties of impact materials found within the rocky unit suggest that the unit varies in thickness in this region. See Fig. 1 for context. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. THEMIS daytime radiance mosaic showing a ∼45 km diameter crater with an intracrater rocky exposure. The crater is also host to low TI material (∼150–250) which is spectrally identical to the undifferentiated plains. The topographic profile across the crater floor suggests that the low TI material overlies the rocky unit. The low TI material is interpreted here as reworked plains material which has been deposited on top of the intracratore rocky unit. See Fig. 1 for context.
higher temperatures, however, resulted in a decrease of water-limited conditions. Tosca et al. (2004) show that olivine is tian weathering environment has been dominated by acidic and interaction with acidic water or fog (e.g., Banin et al., 1992). Rock eriment from pyroxene- and olivine-rich rock is through chemical rocky material.

gradually become enriched in plagioclase relative to the remaining erosion over time, and the fine component of the regolith would bedrock exposures would become less extensive through impact to units in Mare Serpentis, the laboratory results suggest that the dissolution behavior may be dependent on temperature and possibly starting composition. In Mare Serpentis, it is possible that thin films of water on the bedrock dissolved pyroxene and olivine, leaving behind a plagioclase-rich rind. This rind would break down easily into plagioclase-rich sediment (McAdam et al., 2008), leaving behind an unaltered bedrock surface enriched in olivine and pyroxene. Alternatively, sediment could be generated from the rock without alteration. These small particles, with larger surface area than the rocky material, could then be preferentially altered later on through olivine and pyroxene dissolution. Alteration of olivine-rich bedrock to produce olivine-depleted sediment is almost certainly occurring in other locations on Mars, including Gusev Crater (Hurowitz et al., 2006) and Argyle Planitia (Bandfield and Rogers, 2008). In Argyle Planitia, the source of the olivine-depleted sediment (olivine-rich bedrock) is clearly observed, leaving little doubt about the genetic relationship between the two units.

The differences in mineralogical composition between the two major unit types are consistent with general weathering trends suggested for Mars (Fig. 17) (Hurowitz and McLennan, 2007). This observation lends support to the common-originalteration hypothesis. However, these compositional differences could just as easily be produced in the absence of an alteration process.

4.3.2. Stratigraphically distinct crustal units

The second hypothesis is that the mafic rocky unit stratigraphically overlies an older, more degraded, plains “basement” unit (Fig. 16). In this scenario, the relatively pyroxene- and olivine-poor plains composition may represent a primary igneous lithology or weathered mafic material. The rocky unit was deposited in isolated exposures on top of the older plains either through volcanism or through sediment transport and deposition. These exposures may have been more extensive in the past. Subsequent aeolian, impact, and/or fluvial activity modified the margins of the rocky unit, and contributed to partial burial of the mafic rock by less mafic material. The plains and rocky units may have originally formed with similar compositions, but with the older plains materials exposed to greater or more prolonged mechanical and/or chemical weathering conditions than the younger rocky unit.

There are two observations that lend support to this hypothesis. First, crater ejecta from craters ∼3 km diameter or larger are compositionally identical to the surrounding plains. If the mafic rocky unit overlies a less mafic unit, and is relatively thin, then craters above ∼3 km diameter should have little contribution from the rocky unit, as is observed. Second, if the pyroxene-poor nature of the plains is only surficial, as would be implied by the alteration hypothesis, it is expected that fresh craters would expose more mafic material. Small, presumably fresh craters with Tl values of ∼500 more commonly appear spectrally identical to the plains (Fig. 18).

If the mafic rocky unit does represent a relatively younger unit than the majority of the basement material it overlies, then what is its origin? There are no diagnostic morphologic features that indicate a volcanic or sedimentary origin, however there are a few observations worth noting. First, if the mafic exposures are sandstones, there must be a source of that sand. However, no obvious sources or transport pathways are observed. There is also no apparent control on the depositional locations of the sand. The rocky unit is commonly found in relative topographic lows, but there are several exceptions. In addition, there are numerous relatively low areas where no mafic material is found. The dispersed distribution of the mafic material in isolated locations and variable elevations would be entirely consistent with a volcanic origin, however.

Low ridges 600–700 km in length identified near Huygens Crater (just northeast of Mare Serpentis) have been cited as evi-
Fig. 16. Two models put forth to explain the present day spatial trends in composition and thermophysical properties. Model 1, alteration: (a) Start with upper crust of rocky unit composition (Table 2, relatively pyroxene and olivine-rich). (b) Reworking of surface material through cratering, aeolian, and fluvial action, and generation of sediment. (c) Preferential dissolution of olivine and pyroxene in finer sediment; isolated exposures of less altered bedrock remain at the surface. Alternatively, sediment could be altered during step (b), through mineral specific comminution (Hörz et al., 1984). Model 2, two stratigraphic units: (a) Start with basement upper crustal unit of undifferentiated plains composition (Table 2, relatively deficient in pyroxene and olivine). The composition may represent a primary igneous lithology or a weathered mafic unit. (b) Degradation of surface material through cratering, aeolian, and fluvial action, and generation of sediment. (c) Local, dispersed deposition of pyroxene- and olivine-rich bedrock material, probably via volcanism. (d) Partial burial of pyroxene- and olivine-rich rocky material by lateral transport of older sediment and impact into degraded plains basement.

4.3.3. Summary

In summary, the detailed observations have led us to form two hypotheses for the relationship between these mafic rocky and less mafic sediment units: either they are related through a widespread mechanical and/or chemical alteration process, or they are stratigraphically distinct units representing separate episodes of upper crust formation. Existing observations favor the latter scenario, but it is possible that both processes have contributed to surface development in this area. Either scenario would have important implications for current understanding of crust formation and regolith evolution on ancient Mars. These hypotheses should be testable with collection of decimeter-resolution imagery and decameter-resolution short wavelength infrared spectra.

4.4. Relationship between the Mare Serpentis rocky unit, other martian rocks, and the regolith fine component

The rock exposures described here are similar in composition to sands observed at Meridiani Planum with TES and Mars Exploration Rover data (Rogers and Aharonson, 2008). The source of Meridiani sands are unknown, however it is possible that rock compositions similar to those of the Mare Serpentis rocky unit exist near the Meridiani Planum region or at depth below the Burns formation (a sulfate-rich sedimentary unit in Meridiani Planum) (McLennan et al., 2005). As discussed above, preliminary work suggests that bedrock units with this composition may extend to other highland regions.
Fig. 17. Arrow represents the general weathering trend proposed for olivine basalts on Mars, based on in situ compositional measurements at Gusev crater and basalt dissolution experiments (Hurowitz and McLennan, 2007). The trend is for a weathering environment dominated by acidic and water limited conditions. The circles represent the average composition of the primary mineral components (feldspar, pyroxene, and olivine) from plains and rocky units in Table 2.

Neither the rock nor low-TI plains compositions in Mare Serpentis are reasonably comparable to plains basalts in Gusev Crater. Gusev plains basalts, though exhibiting high abundances of plagioclase and pyroxene, have relatively high olivine contents (~20–30%) (McSween et al., 2006; McSween et al., 2008). The differences in composition are not surprising, given the distance between Gusev Crater and the study region.

An average mineralogic composition for the surface layer in Noachian highland regions was derived from TES data (“Group 3” of Rogers and Christensen, 2007). An unresolved question in that study was whether the derived regional composition represents a mixture of compositionally distinct local-scale units, or a relatively uniform surface composition across the region. The Group 3 composition is not a satisfactory match to either Mare Serpentis bedrock or surrounding plains, but is consistent with a mixture of the two units. This suggests that regional compositions derived with TES data (e.g., Rogers and Christensen, 2007) likely represent a mixture of small-scale geologic units with differing compositions rather than to a region of uniform composition.

The rocky unit composition presented here exhibits a low plagioclase/pyroxene ratio relative to many regions of the low albedo regolith fine component (Rogers and Christensen, 2007), and is more similar to martian meteorite compositions than this fine material. Several recent analyses, including this study, have presented evidence that meteorite-like compositions are exposed at the surface of Mars, and span a variety of surface ages and thermophysical properties (e.g., Hamilton et al., 2003; Christensen et al., 2004; Rogers and Christensen, 2007; Stockstill-Cahill et al., 2008).

5. Conclusions

From the observations presented here, we conclude the following:

1. A major compositional and thermophysical trend is observed in the study region, with isolated exposures of mafic rocky
material surrounded by less mafic, lower thermal inertia plains. Preliminary work outside the study area suggests that this trend extends to other highland regions, but this must be verified with more detailed study. Observations of olivine-depleted sediment eroded from olivine-rich bedrock in Argyre basin gullies (Bandfield and Rogers, 2008) are one established example.

2. Two hypotheses for the relationship between mafic rock and less mafic, low-Ti plains units are put forth: either they are related through a widespread mechanical and/or chemical alteration process, or they are stratigraphically distinct units representing separate episodes of upper crust formation. It is possible that both scenarios are applicable to surface development in this area. Existing observations suggest that the second scenario is more likely. In this scenario, plains materials represent degraded, and possibly altered, “basement” rock, whereas the mafic rock exposures represent later, volumetrically minor additions to the crust and are probably volcanic in origin.

3. Isolated rocky exposures in the Mare Serpentis region exhibit remarkably similar compositions, yet are dispersed over an area of ≈10^6 km².

4. Previously derived compositions for the fine component of the regolith (e.g., Rogers and Christensen, 2007) in highland low-albedo regions are similar to a mixture of rock and low-Ti plains compositions observed in Mare Serpentis. There are no extreme differences observed between rock exposures and the low Ti material (the differences are manifested as variable abundances of plagioclase, pyroxene and olivine, rather than as unique mineral assemblages), suggesting that they are closely linked.

Acknowledgments

We are grateful for THEMIS-derived thermal inertia images provided by Robin Ferguson. Sarah Gelman, under sponsorship by the Caltech SURF program, provided assistance in selecting THEMIS images for thermal inertia analysis. Discussions with Scott McLennan were very helpful. Kimberley Seelos and an anonymous reviewer provided helpful and thorough reviews. This work was supported by the NASA Mars Data Analysis Program (grant NNX06AD94G). MOC images were provided by NASA Mars Science Systems. THEMIS images are courtesy of NASA/JPL/Arizona State University.

References

Bandfield, J.L., Hamilton, V.E., Christensen, P.R., 2000b. A global view of martian surface compositions from MGS-TES. Science 287, 1626–1630.

